Chanjong Im
Chanjong Im
Institut II: Gesellschaftswissenschaften
- Doktorand an der Universität Hildesheim in den Informationswissenschaften.
- Bildanalyse mit Computer-Vision-Methoden von Illustrationen in historischen Kinderbüchern.
- Lehrtätigkeit im Bereich Deep Learning-Anwendungen für die Text- und Bildanalyse.
Diem, Sebastian; Im, Chanjong; Mandl, Thomas (2023): Combining Pre-trained Multimodal and Generative Models for Image Disambiguation. In: NAACL 2023 Workshop SemEval. Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), July. Association for Computational Linguistics. pp. 130-135. https://aclanthology.org/2023.semeval-1.18/
Im, Chanjong; Kim, Yongho; & Mandl, Thomas (2022): Deep learning for historical books: classification of printing technology for digitized images. In: Multimedia Tools and Applications, 81(4), pp. 5867-5888.
Mitera, Hanna; Im, Chanjong; Mandl, Thomas; Womser-Hacker, Christa (2021): Objekterkennung in historischen Bilderbüchern: Eine Evaluierung des Potenzials von Computer-Vision-Algorithmen. In: BildWissen–KinderBuch. 137-150. JB Metzler, Stuttgart.
Im, Chanjong; Mandl, Thomas; Helm, Wiebke; Schmideler, Sebastian (2021): Pedagogical Image Knowledge in historical children’s books: A Genre Comparison with Computer Vision Algorithms. In: The Picture in the Picture Book – Its History and Pedagogical Significance in a Transnational Perspective, 4th Digital Workshop "PICTURA paedagogica: Pedagogical Knowledge in Pictures" on 7th May. pp. 5-11.
Helm, Wiebke; Schmideler, Sebastian; Im; Chanjong; Mandl, Thomas; Kollmann, Stefanie; Müller Lars (2021): Wie sich die Bilder ähneln: Vom Zufallsfund zur systematischen Forschung im Bereich der automatisierten Bildähnlichkeitssuche. In: ZfdG - Zeitschrift für digitale Geisteswissenschaften. Fabrikation von Erkenntnis: Experimente in den Digital Humanities. Melusina Press. https://doi.org/10.26298/melusina-8f8w-y749-wsdb-2
Mandl, Thomas; Im, Chanjong; Helm, Wiebke; Schmideler, Sebastian (2020): Object Recognition in Illustrated Children Books: Challenges of Applying Computer Vision Systems: In: Book of Abstracts of the Digital Humanities in the Nordic Countries 5th conference. Riga, 20–23 October. pp. 166-173. https://doi.org/10.5281/zenodo.4107117
Kim, Yongho; Mandl, Thomas; Im, Chanjong; Schmideler, Sebastian; Helm, Wiebke (2020): Applying Computer Vision Systems to Historical Book Illustrations: Challenges and First Results. In: DHN Post-Proceedings, pp. 255-260.
Im, Chanjong; Helm, Wiebke; Mandl, Thomas; Schmideler, Sebastian (2019): Herausforderungen für die Klassifikation historischer Buchillustrationen: Überlegungen am Beispiel retrodigitalisierter Kinder- und Jugendsachbücher des 19. Jahrhunderts. In: 6. Jahrestagung „Digital Humanities im deutschsprachigen Raum (DHd)“ Frankfurt-Mainz, pp. 300-304.
Im, Chanjong; Mandl, Thomas; Helm, Wiebke; Schmideler, Sebastian (2018): Automatic image processing in the Digital Humanities: A pre-study for Children Books in the 19th Century. In: Kollmann, Stefanie; Müller, Lars; Reh, Sabine; Dane, Jacques; Ruiten, Tijs van (eds.): Picture archives and the emergence of visual history of education. ISCHE 40 pre-conference workshop. 3rd workshop "Pictura Paedagogica Online: educational knowledge in images". Berlin [URN: urn:nbn:de:0111-pedocs-158145]
Fadaei, Noushin; Im, Chanjong; Modha, Sandip; Mandl, Thomas (2018): DAIICT-Hildesheim @ Information Retrieval from Microblogs during Disasters (IRMiDis 2018). FIRE (Working Notes), pp. 15-17.
Im, Chanjong; Ghauri, Junaid; Rothman, John; Mandl, Thomas (2018): Deep Learning Approaches to Classification of Production Technology for 19th Century Books. In: Lernen. Wissen. Daten. Analysen (LWDA 2018) Workshop on „Information Retrieval“ (FGIR 2018), August 22-24, Mannheim, pp. 150-158
Im, Chan Jong; Mandl, Thomas (2017): Text Classification for Patents: Experiments with Unigrams, Bigrams and Different Weighting Methods. In: International Journal of Contents 13.2. Korea.
Im, Chanjong; Kim, Do wan (2016): Semi-Automatic Ontology Construction from HTML Documents. In: International Journal of Contents, 12(2), pp. 24-30. Korea.